
Abstract

By appealing to egalitarianism, individualism, desire for simplicity and empirical evidence, this post explains how one can define a social welfare function and use it to determine the best policy response to the issue of climate change despite all of the uncertainty. In particular, such a social welfare function depends primarily on the coefficient of relative risk aversion and the social rate of time preference. Empirical evidence suggests that the coefficient of relative risk aversion is between 0.5 and 2.0, while the social rate of time preference is between 0.2% and 2.4%. This post is designed to be understandable for people without any background in economics and tries to cover all of the relevant nuances with respect to justifying a social welfare function.

Contents

1. Basic Moral Considerations
 A) Introduction to Social Welfare
 B) Additive Separability and Anonymity
 C) Utility as a Function of What?
 D) Simplicity and Empirical Evidence
 E) Expected Utility Theory
 F) Problems with Expected Utility Theory
 G) CRRA Utility Functions
 H) Time Separability
 I) Expected Social Welfare

2. Empirical Estimates of the Coefficient of Relative Risk Aversion
 A) Overview of Empirical Evidence
 B) Tax Structures
 C) Labour Market Behaviour
 D) Happiness Surveys
 E) Ramsey Equation
 F) Statistical Value of Life

3. Other Considerations of CRRA Utility Functions
 A) Finite Statistical Value of Life?
 B) St. Petersburg Paradox
 C) Interesting Things about Logarithmic Utility
 D) Coefficients of Relative Risk Aversion Used Elsewhere

4. Choice of Discount Rate
 A) Values Used for Cost-Benefit Analysis
1. Basic Moral Considerations:

A) Introduction to Social Welfare

There is a lot of uncertainty with respect to the issue of climate change. For example, the current (5th assessment report; add reference) subjective 95% confidence interval of Equilibrium Climate Sensitivity (ECS) according to the International Panel on Climate Change (IPCC) is 1.5 C to 4.5 C. Progress has been made recently in terms of constraining ECS, with the most recently empirical estimates suggesting that ECS is in the lower half of the IPCC’s confidence interval (reference CATO institute). However, even with better estimates it seems that the uncertainty associated with ECS will remain relatively large. In addition, there are many other sources of uncertainty that are relevant with respect to the issue of climate change from uncertainty about the rate at which the climate reaches a new equilibrium, to the uncertainty about the rate of ocean uptake of CO₂, to uncertainty about the costs of mitigation policy, to uncertainty about the cost-effectiveness of geoengineering, to the uncertainty about the economic impacts of climate change.

Despite all of this uncertainty, decisions about what to do about the issue of climate change are going to be made. As a result, it is desirable to have a method that can obtain a unique optimal policy response to climate change given all this uncertainty. Thus it is desirable to have a method that can rank policy responses in order to determine the best policy response given all the uncertainty. However, the scientific method alone does not rank policy responses since the scientific method doesn’t tell people what to do. In order to obtain a ranking of policy responses, at some point moral judgements need to be made. But in order to obtain agreement with others about the decision rule, one needs to limit moral judgements to well-accepted moral principles in society. This post suggests that maximization of expected social welfare may be a reasonable method to rank policy options with respect to climate change given all this uncertainty. Furthermore, this post appeals to egalitarianism, individualism,
preference for model simplicity and empirical evidence to try to justify reasonable social welfare functions for the basis of ranking policy options.

So what is expected social welfare maximization? Expected social welfare maximization is where you try to obtain the set of parameters (such as climate change policies) that will maximize the expected value of a social welfare function. What is a social welfare function? A social welfare function (SWF) is a function that takes the utility of every individual in a society and outputs a real number, which represents the social welfare or well being of society overall. What is the utility of an individual? The utility of an individual is a real number representing the well being of that individual. An individual’s utility may be thought of as a function of various things that influence the individual’s wellbeing in society, such as consumption, level of physical health, level of mental health, amount of leisure time, how much freedom they have, type of climate they live in, how many chocolate bars they eat on Wednesdays, etc. Such a function is often called the individual’s utility function and individuals in society tend to try to maximize their utility functions.

B) Additive Separability and Anonymity

Ultimately, it is desirable to obtain a unique social welfare function to be used for expected social welfare maximization. In order to do this, a reasonable first step may be to constrain the set of acceptable social welfare functions by applying some basic moral principles. Additive separability, in the context of social welfare functions, means that the social welfare of society is equal to the sum of the utilities of the individuals within a society. For example, if there are n individuals within society then society’s additively separable social welfare function is \(W = U_1 + U_2 + \ldots + U_n \). Additive separability may be justified on the basis of individualism and simplicity.

If society should value people as individuals rather than as part of a collective then it might be reasonable to believe that the social welfare function should be \(W = U_1 \# U_2 \# \ldots \# U_n \), where \# is some commutative and associative binary relation; this is known as a separable social welfare function. There are different types of commutative and associative binary relations, thus there are different types of separable SWFs. However, addition is the simplest and most common commutative and associative binary relation that we use in day to day life, so it makes sense to use addition as the binary relative. Note that we could use another commutative and associative binary relation such as multiplication. However, as \(\ln(U_1 * U_2 * \ldots * U_n) = \ln(U_1) + \ln(U_2) + \ldots + \ln(U_n) \), an additively separable SWF is equivalent to a multiplicative SWF provided that one applies appropriate transformations to the SWFs and the utility functions. Furthermore, additive separability makes sense when combined with special kind of utility functions known as von Neumann-Morgenstern utility functions (see 1E).
The anonymity principle states that all individuals in society have the identical utility functions. Thus if the utility of individual i in society is a function of k parameters $X_{1i}, X_{2i}, ..., X_{ki}$ then the additively separable SWF becomes $W = \sum_{i=1}^{n} U(X_{1i}, ..., X_{ki})$, where U is a utility function. The anonymity principle can be justified in two different ways. The first is that as information is limited, we cannot know the utility function of every single individual within society, thus the anonymity is a necessary simplifying assumption needed to be able to define a reasonable SWF. A second way to justify the anonymity principle is on the grounds of egalitarianism; under the anonymity principle, everyone is treated equally by the social welfare function. The idea that people should have equal value in society seems to be a well accepted moral principle in most countries today from Communist China to the USA. Egalitarianism is summarized well by Voltaire: “Mortals are equal; it is not birth, it’s virtue that makes the difference.” If one allows individuals to have different utility functions then it is difficult to ensure that egalitarianism is satisfied as utility functions are generally unique only up to positive monotonic transformations (as positive monotonic transformations do not change how an individual ranks different states of the world, thus the individual’s preferences remain unchanged), thus the anonymity principle seems desirable.

C) Utility as a Function of What?

The well-being of an individual depends on pretty much every aspect of their lives, from the number of grains of rice they eat per year to the number of freckles on their forehead. However, trying to make utility be a function of pretty much anything isn’t feasible, nor practical. Therefore, it makes sense to restrict the utility function to be only a function of parameters that are relevant for the issue of climate change.

An individual’s level of economic consumption is arguably the most relevant factor when determining and individual’s utility in the context of climate change. Mitigation policy may have a negative impact on economic output and thus consumption across the world. On the other hand climate change, from changes in average temperature, to changes in precipitation patterns, to the CO2 fertilization effect, to sea level rise, to ocean acidification, will likely have an effect on economic output, thus consumption. In additional, consumption is pretty much the most common parameter used for utility functions in economics. Therefore, it likely makes sense to have consumption as one of the parameters in a utility function.

Other parameters that affect utility may be relevant for the issue of climate change. For example, the happiness of individuals in society may be directly affected by the climate (Tsutsui (2013) found that a temperature of 13.9 C is optimal for human happiness). How much individuals value the environment may be quite relevant, especially if the environment is harmed by climate change. And the quality of an individual’s health may be a relevant parameter (example: people may prefer longer life expectancies), especially if climate change affects health outcomes in people across society. While there
are likely many relevant parameters for the utility function when it comes to the well being of society, the rest of this post will treat utility as a function of only consumption, in order to keep things relatively simple. Thus, the SWF becomes \(W = \Sigma_{i=1}^{n} U(C_i) \), where \(C_i \) is the consumption of individual \(i \). Furthermore, utility as a function of just consumption is sufficient to talk about making decisions under uncertainty and being risk averse. With respect to the anonymity principle, in reality people do have different preferences, thus it may be reasonable to expect individuals to have different utility functions. However, if utility is just a function of consumption, then this allows for the social welfare function to be egalitarian while also allowing people to have different preferences in terms of how they like to allocate that consumption.

In reality, people may be somewhat altruistic. For example, a person’s utility may be a function of not only their own consumption but also on the consumption of other individuals within society. For a SWF that satisfies additive separability and anonymity, this might mean that one might be able to express partially altruistic individual \(i \)'s utility function as \((1-A)*U_i(C_i) + A*\Sigma_{i=1}^{n} U_i(C_i)\), where \(A \) is the level of altruism of individuals in society (\(A = 0 \) means a completely selfish society and \(A = 1 \) means a completely altruistic society) and \(U_i \) is a completely selfish individual’s utility function. If one puts this utility function into the SWF then one obtains \(W = \Sigma_{i=1}^{n} [(1-A)*U_i(C_i) + A*\Sigma_{i=1}^{n} U_i(C_i)] = (1-A + An)\Sigma_{i=1}^{n} U_i(C_i) \). In this case, the partially altruistic SWF is simply a linear function of the selfish SWF. Thus maximization of the selfish SWF results in maximization of the partially altruistic SWF. Thus, if the SWF satisfies additive separability and anonymity, then altruism may not be a big issue, so having the utility of individuals be a function of only their consumption may be reasonable.

D) Simplicity and Empirical Evidence

The last two sections have reduced the problem of finding a SWF to a problem of finding the utility function of individuals in society where utility is a function only of the consumption of the individual. So the next step is to try to find what functional forms of \(U(C) \) may be reasonable. However, individuals may disagree over what is a reasonable functional form of \(U(C) \). One individual may argue for a square root function, a second individual may argue for a logarithmic function and a third individual may argue for an arctan function. Who is correct? From here, you can take one of two positions. Either you know a priori everyone else’s preferences better than they do, or you don’t. If you don’t then perhaps your best option is to try to infer the average utility function of individuals in society by looking at empirical evidence. This reduces the problem of finding \(U(C) \) to a question of empiricism and is arguably a more democratic approach since you are looking at the average preferences of society rather than basing things on the subjective opinion of a single individual. Such an approach means that one can view \(U(C) \) as a model of human preferences that makes falsifiable predictions about reality. This post will assume that one does not know a priori everyone else’s preferences better than they do so will take the latter approach.
When trying to choose a model of U(C) to be used in a social welfare function, it is important to try to balance model simplicity with the ability of the model to explain observations. A model that does not agree well with observations is arguably falsified and therefore is an unfit model of human preferences. On the other hand, simpler models often have more explanatory power; simpler models may make more falsifiable predictions and simpler models may be easier to work with. Therefore one should have preference for model simplicity (i.e. follow Occam’s razor). Trying to balance model simplicity with the ability of the model to explain observations arguably allows one to determine a unique best model given available empirical evidence (example: Akaike’s Information Criterion). Thus, it might be possible to obtain a unique best estimate of U(C) despite all of the uncertainty, which allows the determination of a best social welfare function to be used to rank policy options. The idea of balancing model simplicity with agreement with observations is well summed up by David Romer: “A model should be as simple as possible while still showing the effect we are interested in.”

E) Expected Utility Theory

In order to determine a reasonable social welfare function, a way to estimate U(C) from empirical data is desired. One common and well known model of human behaviour that can be used to determine U(C) empirically is known as expected utility theory (EUT). Under expected utility theory, an individual tries to maximize their utility and the utility of an individual over a probability distribution of outcomes is equal to the expected value of the individual’s utility. The utility function that corresponds to EUT is a special type of utility function known as a von Neumann-Morgenstern Utility function (vNM). A vNM utility function is a utility function where \(U([p(a);(1-p)b]) = pU(a) + pU(b) \), where \(a \) is one possible outcome, \(b \) is another possible outcome and \([p(a);(1-p)b] \) corresponds to a \(p \) probability of outcome \(a \) and a \((1-p)\) probability of outcome \(b \). A vNM utility function is unique up to positive affine transformation (i.e. multiplying a vNM utility function by a positive number or adding a constant will not change human behaviour). This means that a SWF that satisfies additive separability and anonymity, and uses a vNM utility function will be unique up to positive affine transformations. Positive affine transformations of the SWF do not change what maximizes the SWF, so using EUT to find a vNM utility function is sufficient for the purpose of social welfare maximization.

There are some interesting things about using a vNM utility function. When combined with a SWF that satisfies additive separability and anonymity, the social welfare function has the property where if the people in your society are indifferent between losing \(X \) dollars and gaining \(Y \) dollars when they have a consumption level of \(C \), then the social welfare function is indifferent about a transformation of the allocation of consumption that makes one person at a consumption level of \(C \) \(X \) dollars poorer and another person at consumption level \(C \) \(Y \) dollars richer. If you think this is a desirable property, then vNM utility functions are the natural utility functions to use with SWFs that satisfy additive separability and anonymity. Secondly, human decision making under uncertainty following expected utility theory can be explained by evolution. For example, if there were evolutionary pressure
for humans to develop preferences that maximized the expected value of their reproductive success, then it should be expected that human decision making under uncertainty can be explained by EUT where the vNM utility function was a very strong predictor of reproductive success. For the rest of this post, I will assume that utility functions used are vNM utility functions.

F) Problems with Expected Utility Theory

Expected Utility Theory is a model of human preferences that makes falsifiable predictions about reality. There is some evidence that goes against the predictions of EUT. The most famous example is the Allais paradox (Allais 1953; see https://en.wikipedia.org/wiki/Allais_paradox), where EUT is violated for choices between certain and uncertain outcomes. A second violation of EUT is the observation of the behaviour of loss aversion in humans. Loss aversion means that individuals have a stronger preference for avoiding losses relative to their preference for obtaining gains than what can be explained by EUT. A third common observation that can seem inconsistent with EUT is the fact that some individuals may simultaneously buy insurance (so are risk averse) and lottery tickets (so are risk loving). An alternative model to EUT that better explains these observations is known as prospect theory. In prospect theory, the utility an individual gains from a consumption level C depends both on their consumption level C, as well as their current level of consumption.

There are a few explanations to these observations that may allow EUT to not be violated. One possibility is that humans are uncertain about their own preferences, so are less certain about the utility they would gain out of a consumption level further from their current consumption level than for a consumption level closer to their current consumption level. This uncertainty of one’s own preferences can cause the behaviour of loss aversion. A second possibility is that there is a utility cost for complexity as it costs humans more brain power and time to evaluate more complicated outcomes; thus the Allais paradox could be resolved provided that outcome complexity is included in the utility function. A third possibility is that humans are simply not perfect at evaluating their expected utility (there may even be evolutionary reasons for this; see 3A). Many individuals are terrible at math and humans tend to have many cognitive biases that may cause bad decisions. Humans tend to have an optimism bias, the tendency to overestimate the probability of good events and underestimate bad events and many humans tend to believe in the gambler’s fallacy, the idea that luck will necessarily even out. A fourth possibility is that humans may gain utility out of participating in games (such as buying a lottery ticket or playing poker), thus expected utility maximizing individuals may choose to participate in games, even if it decreases their expected consumption utility.

The rest of this post will assume that EUT is valid. While there may be issues with EUT, EUT keeps things simple and allows for the utility function to be estimated empirically. More complex models, such as prospect theory, have consistency issues, so cannot be used to determine a SWF to be
used for ranking policy options. I leave it to the reader to decide if EUT is reasonable or not. However, the reader should be aware of potential issues of EUT, especially as these potential issues may bias estimates of the utility function. These biases may result in measures of risk aversion that appear to be inconsistent even if aren’t in reality.

G) CRRA Utility Functions

The average utility function of individuals in society can be estimated empirically by looking at the decisions people make under uncertainty. Arguably, the two most common measures of risk aversion are the coefficient of absolute risk aversion and the coefficient of relative risk aversion (RRA). The coefficient of absolute risk aversion is defined as \(-\frac{d^2U}{dC^2}/(dU/dC)\) and the coefficient of RRA is defined as \(-\frac{d^2U}{dC^2}C/(dU/dC)\). A quick review of the literature suggests that in humans, the coefficient of absolute risk aversion is a decreasing function of consumption level (Friend and Blume 1975). On the other hand, whether the coefficient of RRA increases, decreases or remains constant as a function of consumption is disputed and there is a fair amount of uncertainty about its magnitude (Outreville 2014). Given all the uncertainty and the desire to balance model simplicity with the ability of the model to fit empirical observations, it may be reasonable to assume that the coefficient of relative risk aversion is roughly a constant function of consumption. Furthermore, constant relative risk aversion (CRRA) utility functions have a special property known as homotheticity. This property results in individuals at low levels of consumption having similar behaviour as individuals at high levels of income, which means that CRRA utility functions have a lot of explanatory power. As a result, CRRA utility functions are among the most widely used utility functions in economics.

CRRA utility functions are defined, up to affine transformation, as \(U(C) = C^{1-\eta}/(1-\eta)\) when \(\eta \neq 1\) and as \(U(C) = \ln(C)\) when \(\eta = 1\), where \(\eta\) is the coefficient of RRA. If \(\eta > 0\) then the utility function is risk averse. Using a CRRA utility function in the SWF means that the SWF satisfies the Pareto principle (the property where if a policy can make 1 individual better off, without making any individuals worse off, then society is better off with that policy) and, if \(\eta > 0\), satisfies the Pigou-Dalton principle (the property where if a policy can make a poor person richer by a small amount and a rich person poorer by an equally small amount then society is better off with that policy). \(\eta\) affects how the SWF deals with risk, intragenerational inequality and intergenerational inequality. \(\eta = 0\) causes the SWF to be risk neutral and to not care about consumption inequality in society; this corresponds to the decision making under traditional cost-benefit analysis. \(\eta = \infty\) causes the SWF to avoid all risk and avoid all inequality; this corresponds to the decision making under the strong precautionary principle. \(\eta\) between 0 and \(\infty\) results in a SWF that has a moderate level of risk aversion and values both total consumption in society as well as consumption inequality. The value of \(\eta\) is a prior indeterminate, however it can be estimated from empirical data. Below is a plot that shows CRRA utility functions for \(\eta = 0, 0.5, 1\) and 2.
An individual may care about more than just their total consumption over their lifetime; they may care about the timing of that consumption. Humans tend to have a preference for present consumption over future consumption and tend to want to smooth consumption over time. The most common way to treat this timing issue is to treat the utility function as additively separable with respect to time. In this case, for an individual that lives for T periods, the individual’s lifetime utility function is \(\sum_{t=1}^{T} w_t U(C_t) \), where \(C_t \) is the individual’s consumption for period \(t \) and \(w_t \) is the weight of period \(t \). Often, the weights will be represented by an exponentially decreasing function of time, which means that the individual’s lifetime utility function is \(\sum_{t=1}^{T} e^{-\rho t} U(C_t) \), where \(\rho \) is a discount rate. This specification of the individual’s lifetime utility function makes falsifiable predictions about the behaviour of the individual and \(\rho \) can be empirically measured by looking at human behaviour. Furthermore, the use of a constant discount rate results in behaviour of the individual that does not depend on the chosen starting period.

If one puts this into a SWF with constant relative risk aversion and assumes that the utility of a dead individual is zero then the SWF becomes \(W = \sum_{t=1}^{\infty} e^{-\rho t} \sum_{i=1}^{N(t)} C_{it}^{1-\eta} \) when \(\eta \neq 1 \) and \(W = \sum_{t=1}^{\infty} e^{-\rho t} \sum_{i=1}^{N(t)} \ln(C_{it}) \) when \(\eta = 1 \), where \(\eta \) is coefficient of RRA, \(N(t) \) corresponds to the number of people alive in period \(t \) and \(C_{it} \) corresponds to the consumption of the \(i^{th} \) individual alive in time period \(t \). This specification reduces the problem of finding a SWF to the problem of finding 2 parameters, \(\eta \) and \(\rho \), both of which may be estimated empirically. There are some issues with this specification of the SWF,
which will be discussed in section 4. However, for now this post will assume that this specification of the SWF is reasonable.

I) Expected Social Welfare

Since maximizing expected utility is how individuals in society make decisions under uncertainty (for EUT), it may make sense that maximizing the expected value of the SWF (for an additively separable SWF) is how society should make decisions under uncertainty, as this is the natural extension of expected utility maximization to the SWF. However, before accepting expected social welfare maximization as a reasonable method for decision making, it may make sense to look at some other common decision rules.

One common decision rule is traditional cost-benefit analysis. Under traditional cost-benefit analysis, one tries to choose the policy option that maximizes the net present value of benefits minus the net present value of costs (using a suitable discount rate). The theoretical justification for cost-benefit analysis is that if the there is little uncertainty about the future and any policy under consideration will have relatively small impacts on the consumption of individuals in society then traditional cost-benefit analysis will be approximately the same thing as expected social welfare maximization. However, in the case of climate change, the uncertainty is large and the impact of policies on consumption may be large, so traditional cost-benefit analysis is inadequate. However, if the coefficient of RRA is zero then traditional cost-benefit analysis will still result in expected social welfare maximization.

The strong precautionary principle is a decision rule that I frequently see argued for in the context of climate change. Under the strong precautionary principle, if there is any risk that a policy may have a negative impact on society, then that policy should not be taken. There are numerous problems with the strong precautionary principle. For one, the strong precautionary principle contradicts itself. For example, if one uses the strong precautionary principle to decide whether or not a new drug should be allowed on the market, one runs the risk of disallowing many perfectly good drugs, causing harm to society. Thus the strong precautionary principle has a risk of causing harm to society so should not be allowed under the strong precautionary principle. Secondly, the strong precautionary principle has many bizarre policy implications. For example, as one cannot exclude the possibility that a giant flying spaghetti monster may appear and try to destroy New York. Therefore, under the strong precautionary principle, the US government should spend economic resources to ensure that it can fend off any attack by a giant flying spaghetti monster. The strong precautionary principle also suggests that society should ensure that all cows wear snowshoes (https://www.youtube.com/watch?v=6R999ZLlSdI). Given these issues, the strong precautionary principle does not seem like a reasonable method to make decisions.
Although, if the coefficient of RRA is infinite then expected social welfare maximization reduces to the strong precautionary principle.

One could come up with a decision rule where one performs a traditional cost-benefit analysis but uses the worst case scenario of a non-100% confidence interval over the probability distribution of different outcomes. This would allow for a ranking of policy responses and would be risk averse (yet not as extreme as the strong precautionary principle). However, such a decision rule would not be very desirable since the choice of the size of the confidence interval would be arbitrary and it does not have the property where if the probability distribution of ECS changes to suggest a higher ECS then the optimal policy response may not necessarily change (see Figure 2). Furthermore, such a decision making mechanism would not have a strong theoretical justification, unlike expected social welfare maximization. The rest of this post will assume that expected social welfare maximization is a reasonable way to make policy decisions under uncertainty.

![Figure 2: Even if the probability distribution changes to suggest a higher climate sensitivity, the upper bound of the confidence interval may remain unchanged.](image)

2. Empirical Estimates of the Coefficient of Relative Risk Aversion:

A) Overview of Empirical Evidence

It may be helpful to look at empirical evidence, to see what values of \(\eta \), the coefficient of relative risk aversion (also sometimes called the elasticity of marginal utility of consumption), may be reasonable. The literature on empirical estimates of \(\eta \) is vast and there are many different methods by which one can estimate it, from looking at insurance market behaviour, to looking at market price elasticities, to setting up experiments. Some methods are more reliable than others, for example, for
questionnaire studies, there may be incentives for people to lie, where as looking at how individuals manage their finances may give a more accurate picture of human preferences. If you wish to read a more extensive review of the literature of measures of \(\eta \), then I suggest a literature by Outreville (2014). However, this post will just cover 5 different estimates, in order to keep things short and as I feel that these 5 are the most relevant.

B) Tax Structures

One of the more popular ways of estimating \(\eta \), at least when it comes to justifying a value of \(\eta \) to be used in integrated assessment models, is to look at the tax structure of society to get an idea of how much society values the additional dollar of a poor person relative to the additional dollar of a rich person. One of the most common methods by which one can do this is a method first suggested by Stern (1977), which assumes that tax distributions roughly follow an equal sacrifice principle (i.e. the loss of utility of taxation is the same for all individuals in society). Under the principle, \(\eta \) is roughly equal to \(\frac{\ln(1-t_m)}{\ln(1-t_s)} \), where \(t_m \) is the marginal tax of the individual (i.e. the tax they would have to pay on an addition dollar of income) and \(t_s \) is the average tax of the individual (i.e. total tax paid divided by total income). One of the more recent and thorough studies that uses this method to estimate \(\eta \) is one by Evans (2005). In this study, Evans used tax structures of 20 OECD countries and obtained a best estimate of \(\eta \) of 1.41.

There are a few issues with using this method to estimate \(\eta \). For one, a tax system that maximizes the social welfare of society is unlikely to follow the equal sacrifice principle; rather an optimal tax system would consist roughly of a combination of a flat tax and a basic income (Mankiw et al. 2009), which would result in the poorest in society having an negative effective tax rate. Secondly, such a method necessarily constrains \(\eta \) to be greater than or equal to 1 for progressive tax structures and cannot deal with cases where the effective marginal tax rate exceeds 100% (this can occur if there is a strong welfare trap). Thirdly, governments with very similar populations are observed to have very different taxation policy (example: compare North Korea with South Korea, or compare consumption taxes in the USA compared to Western Europe), which suggests that governments are very bad at evaluating optimal taxation policy.

Lastly, the optimal tax structure depends on more than just \(\eta \). Optimal tax structures depend greatly on how much people value their leisure time and therefore the effect that tax structures will have on the incentive for individuals to work. The uncertainty of the effect of taxation on the willingness of people to work is fairly large (estimates of the labour supply elasticity of taxation tend to vary from 0.1 to 0.7). Even for the same value of \(\eta \) (say \(\eta = 1 \)), a low labour supply elasticity may suggest a very libertarian optimal tax structure, where as a high labour supply elasticity may suggest a very socialist optimal tax structure. As people generally value their leisure time, and more progressive tax structures
generally result in people having more leisure time (as they have less employment), estimates using this method will tend to overestimate η, as they ignore the fact that people value their leisure time. In addition, optimal taxation also depends on the level of income inequality in society (Mankiw et al. 2009); a higher level of income inequality suggests that a social welfare maximizing tax system becomes more income redistributing. Overall, while looking at tax structures can give useful insight into the value of η, such an approach has numerous flaws.

C) Labour Market Behaviour

Another interesting way to estimate η is to look at labour market behaviour. One of the best studies that takes this approach is a paper by Chetty (2006). In this paper, Chetty invents a method to estimate η by taking advantage of uncertainty in future labour market conditions and using data on labour market behaviour. Chetty’s best estimate of η is 0.97, which suggests that utility is roughly a logarithmic function of consumption. However, this estimate assumes that the complementariness of leisure and consumption is 0.15. The uncertainty of this complementariness suggests that this estimate may be an underestimate (perhaps by as much as 33%). However, even after taking this uncertainty into account, Chetty finds that a value of η greater than 2 is simply inconsistent with labour market behaviour. Thus Chetty’s paper provides a good upper bound for η.

D) Happiness Surveys

Arguably, one of the best estimates for η has been performed by Layard et al. (2008). The approach by Layard et al. takes advantage of the fact that happiness is correlated with utility and uses data on self reported happiness from over 200,000 individuals to estimate η. Initially, Layard et al. assume that happiness is roughly a linear function of utility to estimate η as 1.26 (with 95% confidence interval of [1.15,1.37]). However, happiness is not necessarily a linear function of utility, more generally it can be any positive monotonic transformation of utility. To check for this possibility, Layard et al. relax their linearity consumption slightly to find a better estimate of 1.24 (with 95% confidence interval of [1.14,1.35]). In both cases, Layard et al. control for various other explanatory factors for differences in self reported happiness such as leisure time. Thus the Layard et al. result doesn’t have a bias due to not adequately taking into account leisure time, unlike the results of Evans and Chetty.

It may seem like unlikely coincidence for self-reported happiness to be a roughly linear function of utility. However, if humans follow the behaviour of EUT, then humans may have a natural tendency to treat happiness as a linear function of utility because then the expected happiness maximization will result in expected utility maximization. One issue with using happiness surveys is that happiness and utility may become uncorrelated in cases of misinformation (the saying ‘ignorance is bliss’ comes to
mind), so one should be a bit skeptical about the results. Overall, the Layard et al. result using happiness survey data gives a surprisingly robust and surprisingly well constrained estimate of \(\eta \).

E) Ramsey Equation

If the individuals in society have a lifetime utility function of \(\sum_{t=1}^{T} e^{-\rho t} C_{t}^{1-\eta}/(1-\eta) \) when \(\eta \neq 1 \) and \(\sum_{t=1}^{T} e^{-\rho t} \ln(C_{t}) \) when \(\eta = 1 \), where \(T \) is the lifetime of the individual, and \(\rho \) is the discount rate, then this has predictions about the interest rate of society. In such a society, \(r = \rho + \eta g \), where \(r \) is the real riskless after-tax interest rate, \(\rho \) is known as the social rate of time preference, \(\eta \) is the coefficient of RRA, and \(g \) is the growth rate of real purchasing price parity GDP per capita (see Creedy and Guest 2008 for a derivation). This equation is known as the Ramsey equation.

Using the Ramsey equation, it is possible to estimate both \(\rho \) and \(\eta \) by using data on real interest rates and rates of real GDP per capita growth. However, in the short run it is possible for a country’s interest rates to diverge from what is expected by the Ramsey equation and actually this may be expected based on the policies of most central banks in the word (which tend to roughly follow a rule known as the Taylor rule). However, in the long run, Ramsey’s equation should be roughly satisfied, so one may be able to estimate \(\eta \) by comparing real interest rates and real GDP per capita growth rates averaged over a long period of time between countries. Anthoff et al. (2009) use data from 27 OECD countries over a 36 year period and obtain a best estimate of \(\eta \) of 1.18. This is similar to the estimate of Layard et al. although the uncertainty of the Anthoff et al. estimate is much higher. One issue with this estimate is that the social rate of time preference \(\rho \) may be different for different countries. In particular, countries with higher life expectancies may be expected to have lower values of \(\rho \). Since life expectancy is positively correlated with real GDP per capita, and real GDP per capita is negatively correlated with real GDP per capita growth over the period of time used by Anthoff et al., such a specification error may suggest that this estimate by Anthoff et al. is an overestimate.

If people do not value the future more than the present, then \(\rho \) cannot be less than zero. As a result, \(\eta < r/g \) provides an upper bound on the value of \(\eta \). According to the World Bank, the average real riskless interest rate of the USA from 1995-2014 was 3.88%. In addition, the tax on capital gains in the USA is approximately 19.1% (http://taxfoundation.org/article/capital-gains-rate-country-2011-oecd). This suggests that the after-tax average real riskless interest rate for this period was 3.14%. By comparison, the average rate of real GDP per capita growth for the USA over this period was 1.475%. This suggests that \(\eta \) greater than 2.14 would be inconsistent with empirical evidence. This agrees with the result by Chetty, that \(\eta \) greater than 2 is inconsistent with empirical observations.

F) Statistical Value of Life
How people make decisions when it comes to the probability of death can also be used to estimate η. If the average individual in society is indifferent about taking a risk that has a $(1 - \alpha)$ chance of increasing their consumption by ΔC and an α chance of killing them, where α and $\Delta C/C$ are both very small, then $\Delta C/\alpha$ is known as the statistical value of life (SVL). If the utility of death corresponds to a consumption level of zero then this suggests that $U(C) = (1 - \alpha)U(C + \Delta C)$

$$C^{1-\eta}/(1 - \eta) = (1 - \alpha)(C + \Delta C)^{1-\eta}/(1 - \eta) \Rightarrow C^{1-\eta} = (1 - \alpha)(1 + \Delta C/C)^{1-\eta} = (1 - \alpha)(1 + (1 - \eta)\Delta C/C)$$

$$\Rightarrow 1 - \alpha + (1 - \eta)\Delta C/C \Rightarrow \eta = 1 - \alpha C/\Delta C = 1 - C/SVL$$

For the USA, the SVL is approximately 200 times annual per capita income (Cline 1992). Furthermore, the life expectancy for the USA in 1992 was 72 years. If the average person is middle aged, then this suggests that they would have on average 36 years of remaining life. This means that total remaining consumption for the individual would be roughly 36 times annual per capita income. Putting this information into the above equation gives $\eta = 0.82$. Of course this is a very rough estimate with numerous problems, but it does illustrate how statistical value of life estimates can be used to estimate η. Note that a finite statistical value of life implies that $\eta < 1$.

3. Other Considerations of CRRA Utility Functions

A) Finite Statistical Value of Life?

The equation derived in $2F$ suggests that if $\eta \geq 1$ then the statistical value of life for a CRRA utility function cannot be finite. Yet empirical estimates suggest that the SVL is finite and in everyday society it is observed that people frequently do risky activities that put their lives at risk, from smoking, to talking on a cellphone while driving, to sky diving. To show the absurdity of an infinite SVL, take the simple activity of eating a potato chip. Potato chips are unhealthy and can increase your chance of dying from heart disease. Even if the increase in the probability of dying from eating a potato chip is very small (say one in one sextillion) it is still finite, and the pleasure gained from eating a potato chip is finite, thus an expected utility maximizing individual would never eat that potato chip if they assigned an infinite value to their own life. Given that people eat potato chips in society, the SVL is likely finite.

Is possible to have $\eta \geq 1$ and a finite SVL? It is possible provided that the constantness of the coefficient of RRA breaks down at low levels of consumption and that the limit of η as consumption approaches zero is less than 1. Why might η be less than 1 for very low levels of consumption? Well one reason is that people become increasingly desperate in extreme poverty and in extreme poverty the individual's remaining life expectancy is strongly dependent on their level of consumption. A person that is starving to death may only have a month or two of remaining life; however, if they take a risk they may be able to afford enough food to not starve to death, which may give them many years of
additional life. In such a scenario, individuals may actually become risk loving ($\eta < 0$), which means that the Pigou-Dalton principle may be violated for individuals that are starving to death. One way to illustrate violation of the Pigou-Dalton principle is to consider two individuals stranded on a boat in the Pacific Ocean. In this scenario, if the two individuals do nothing both will starve to death before receiving help, but if one individual eats the other individual then the remaining individual will live long enough to receive help and live on for many years. In this case, social welfare maximization suggests that one individual should cannibalize the other individual; thus increased consumption inequality is desirable, which suggests that the Pigou-Dalton principle is violated.

The previous paragraph suggests that one may be able to observe a constant $\eta \geq 1$ for most consumption levels and a finite statistical life provided that the constantness of η breaks down in cases of extreme poverty. In particular, if the reason for this break down is due to starvation and the effect of low levels of consumption on remaining life expectancy then there should be a discontinuity in human behaviour around the subsistence level of real GDP per capita. Caballero (2010) has found empirical evidence consistent with this hypothesis. Caballero performed experiments with impoverished Colombians to try to determine their behaviour under risk. In the study, Caballero uses a subsistence level of real GDP per capita of 148,000 2009 Colombian Pesos per month (this corresponds to about $1445 2009 USD per year in purchasing price parity) to try to see if there is a discontinuity in risk aversion around the subsistence level. Caballero finds that individuals just above the subsistence level of real GDP per capita are far more risk averse than people just below the subsistence level of real GDP per capita.

Given that the vast majority of the world has a level of income above the subsistence level of real GDP per capita, and that this should continue over the next hundred years, the usage of $\Sigma_{t=1}^{T} e^{\rho t} C_t^{1-\eta} / (1 - \eta)$ when $\eta \neq 1$ and $\Sigma_{t=1}^{T} e^{\rho t} \ln(C_t)$ when $\eta = 1$ as the SWF may be reasonable even if η is a constant that is greater than or equal to 1 for the application of determining optimal policy with respect to climate change. However, one should note that such a CRRA utility function would break down for dead people and for people in extreme poverty. A better utility function to be used for expected social welfare maximization might be a piecewise continuous function that is a CRRA utility function above the subsistence level of consumption and something else (such as a polynomial) below the subsistence level. Lastly, I want to point out that this discontinuity in behaviour around the subsistence level may explain the behaviour of loss aversion in humans. For most of human history, humans lived at roughly the subsistence level of consumption, where the behaviour of loss aversion is consistent with expected utility maximization. Thus there would have been no selectional pressure against individuals with loss aversion behaviour (and it may have been an evolutionary advantage as it may have allowed for decisions to be made with less cognitive resources).

B) St. Petersburg Paradox

...
A famous problem that is relevant to the discussion of human preferences is known as the St. Petersburg paradox (see https://en.wikipedia.org/wiki/St._Petersburg_paradox). In the St. Petersburg paradox, an individual is offered to pay the following fee of $x and play the following game: the individual has a 1/2 chance of winning $2, a 1/4 chance of winning $4, a 1/8 chance of winning $8 and so on. Most individuals are only willing to pay a finite fee to play the game, yet the expected winnings of the game is infinite. How can this be? The original St. Petersburg paradox was resolved using EUT.

However, Menger (1934) showed that games similar to the St. Petersburg paradox suggest that the utility of infinite consumption is necessarily finite. This suggests that η must be greater than 1 as consumption approaches infinity. Nobel prize winner Kenneth Arrow argued in the 60's that the result by Menger combined with finite statistical value of life suggest that the η in humans cannot vary much from 1, thus utility is an approximately logarithmic function of consumption. Overall, finite statistical life, the results by Caballero and the result by Menger suggest that η is not a constant function of income. Below is a sketch of one possibility of how η may vary with level of consumption in order to be consistent with these observations.

![Figure 3: Sketch of coefficient of relative risk aversion vs consumption](image)

Figure 3: Sketch of coefficient of relative risk aversion vs consumption

- just above subsistence level η is large
- η is roughly constant for most levels of consumption
- below subsistence level $\eta < 1$
- $\eta < 0$ in cases of extremely low consumption

C) Interesting Things about Logarithmic Utility

There are a few interesting things about $\eta = 1$ that are worth mentioning. Firstly, $\eta = 1$ is arguably expected under utility theory as argued by Sinn (2003) and Zhang et al. (2014), so there might be an evolutionary basis for $\eta = 1$. Secondly a logarithmic utility function maximizes the long run size of an individual's stock portfolio, so individuals with $\eta = 1$ preferences may be the most successful in society. Finally, the usage of $\eta = 1$ significantly simplifies calculating the SWF. Consumption is roughly proportional to economic output (assuming constant savings rate) and real GDP per capita in purchasing price parity is inversely proportional to prices. Thus the usage of $\eta = 1$ means that the maximization of
the SWF does not depend strongly on the savings rate nor on how purchasing price parity is determined and one can replace consumption in the social welfare function with an individual’s real GDP.

In addition, the production function is usually specified as a Cobb-Douglas production function, where different factors of production are multiplicatively separable (Nordhaus’ DICE integrated assessment model uses such a production function where the economic impact of climate change as well as the costs of mitigation are multiplicatively separable). As a result, the logarithm of a Cobb-Douglas production function is additively separable, which means that, after one takes the derivatives of the SWF, many of the terms go to zero. The maximization of such a social welfare function will not depend strongly on things like the growth rate of productivity or the level of education of individuals in society, so the decision making will be more robust. Lastly, Cobb-Douglas functions are generally relatively easy to estimate (due to the fact that the logarithm is additively separable, so one can estimate such a function with a simple linear regression), so there is far more literature on empirical estimates of the economic impacts of climate change and mitigation using Cobb-Douglas production functions than other functional forms. One can use the variation in economic output across the globe to estimate economic impacts of climate change and mitigation costs (examples include Nordhaus et al. 2006, Zhao 2011 and Burke et al. 2015); such a method has the added benefit of avoiding publication bias in the literature.

D) Coefficients of Relative Risk Aversion Used Elsewhere

To end this section, I will discuss the values of \(\eta \) that have been used by other people. Stern (2007) used a value of 1 in his famous Stern Review. Nordhaus (Nordhaus and Sztorc 2013) currently uses a value of 1.45 as the default parameter in his DICE integrated assessment model, although he used a value of 2 in the past. Tol (Anthoff et al. 2009) currently uses a value of 1.47 in his FUND integrated assessment model. The United Kingdom Treasury currently uses a value of 1, which was reduced from 1.5 a few years ago. By comparison the 5 values that I discussed in section 2 were 1.41 (Evans 2005 using tax structures of 20 OECD countries), 0.97 (Chetty 2006 using labour market behaviour), 1.24 (Layard et al. 2008 using happiness surveys), 1.18 (Anthoff et al. 2009 using Ramsey’s equation and data from 27 OECD countries) and 0.82 (this post using statistical value of life from Cline 1992). Given the range of estimates, a value of \(\eta \) outside of the range \([0.5,2.0]\) is inconsistent with empirical observations (the upperbound was argued by Chetty, and the lowerbound is partially subjective, although is probably a bit generous given the range of estimates in Outreville 2014). This suggests that utility as a function of consumption is somewhere between a square root function and a unit hyperbola.

4. Choice of Discount Rate:
A) Values Used for Cost-Benefit Analysis

In addition to determining a reasonable value of the coefficient of relative risk aversion η, a reasonable value of the discount rate ρ needs to be determined in order to have a well justified social welfare function. It may help to examine what discount rates are currently used in cost-benefit analyses in order to determine a reasonable value of ρ. The Office of Management and Budget (OMB) recommends a default rate of 7% for base-case analysis (https://www.whitehouse.gov/omb/circulars_a094/). Some have suggested that because of this, a 7% discount rate should be applied in the context of making decisions about climate change. However, there are a few issues with using this discount rate for expected social welfare maximization. The justification for this rate, according to the OMB, is “This rate approximates the marginal pretax rate of return on an average investment in the private sector in recent years.” Yet this was written in 1992, so is 23 years out of date. Figure 4 shows how market interest rates have evolved over the past few decades for the USA according to the World Bank.

![Figure 4: Real Interest Rates vs Time for USA](chart)

From Figure 4, it is clear that interest rates peaked in the 80’s and have slowly declined since. The interest rates during the few years prior to 1992 were higher than the interest rates in recent years. Therefore, the 7% rate seems inappropriate for today and perhaps the rate by the OMB should be updated to be more reflective of interest rates in recent years (perhaps 4% would be more appropriate). As a comparison, the recommended rates in other countries are 8% (Canada, Australia, New Zealand and China), 5% (Italy), 4% (France), 3.5% (UK) and 3% (Germany).
Secondly, there is the question of whether or not to use risk free interest rates. For some applications, such as using traditional cost-benefit analysis to determine whether or not to finance a new bridge, adding a risk premium to the discount rate may make sense as there is a chance that one may not be able to get a return from that investment (the bridge might get destroyed by a natural disaster or a war, or it might get expropriated by the government). In the case of expected social welfare maximization, one tries to take into account the probability and outcome of all possibilities including unlikely events, so such an approach already takes risk into account. The discount rate used in the SWF for social welfare maximization reflects the trade-off in consumption between periods under certainty, so risk free interest rates should be used.

Thirdly, the discount rate in the SWF reflects how much individuals value the utility of future consumption relative to the value of present consumption, therefore it may be more appropriate to look at how much consumers in the market are valuing future consumption relative to present consumption. The return that a consumer gets on their savings depends on the after-tax interest rate, not the pretax interest rate. Therefore, the use of pretax interest rates is more appropriate. As mentioned earlier, the average after-tax real riskless interest rate over the past 20 years was 3.14%, which is roughly the 3% discount rate recommended by the OMB for decisions that primarily affect the consumption of individuals in society.

B) Ramsey Equation

The after-tax real riskless interest rate represents how individuals in society value future consumption relative to present consumption. However, that isn’t necessarily the same thing as how individuals in society value future utility of consumption relative to present utility of consumption. As explained in 2E, if a society consists of lifetime utility maximizing individuals with utility functions \(\sum_{t=1}^{\infty} e^{-\rho t} C_t^{1-\eta}/(1-\eta) \) when \(\eta \neq 1 \) and \(\sum_{t=1}^{\infty} e^{-\rho t} \ln(C_t) \) when \(\eta = 1 \), then \(r = \rho + \eta g \), where \(r \) is the real riskless after-tax interest rate, \(\rho \) is the social rate of time preference, \(\eta \) is the coefficient of RRA, and \(g \) is the growth rate of real GDP per capita. This equation is known as the Ramsey equation. Note that this equation suggests that real interest rates depend on the real GDP per capita growth rate, which helps to explain some of the variation in observed interest rates in figure 4.

As a quick example, if one uses \(r = 3.14\% \) and \(g = 1.475\% \) (these correspond to the average values of the US over the past 20 years) and \(\eta = 1 \) (logarithmic utility) then this suggests that one should use \(\rho = 1.665\% \) in order to be consistent with the Ramsey equation. More generally, if \(\eta \) is in the interval \([0.5,2.0]\) then the Ramsey equation suggests that \(\rho \) is in the interval \([0.2\%,2.4\%]\). By comparison, Nordhaus and Sztorc (2013) use \(\eta = 1.45 \) and \(\rho = 1.5\% \) for DICE and Anthoff et al. (2009) use \(\eta = 1.47 \) and \(\rho = 1.07\% \) for FUND; both sets of values are roughly consistent with Ramsey’s equation. One possible explanation for the value of \(\rho \) is that \(\rho \) represents the probability of a consumer dying in a given year.
(and therefore be unable to benefit from any savings). As a comparison, the average global life expectancy is 71 years for 2013; the inverse of this is 1.41% per year. Note that even though the Ramsey equation suggests using a lower discount rate than what is suggested for traditional cost-benefit analysis, this lower discount rate is offset by the fact that \(\eta \) takes into account intergeneration inequality (future generations will be richer than present ones).

C) Zero Discount Rate?

Some individuals, such as Stern (2007), have taken the moral position that discounting with \(\rho > 0 \) is immoral because it values present generations more than future generations and therefore values people unequally. There are a few issues with such a position. For one, with \(\rho = 0 \), the SWF does not converge and therefore cannot generally be evaluated (so policy decisions cannot be made); \(\rho = 0 \) suggests that all time periods have no weight in the SWF, except the limit of the period as time approaches infinity (which has all the weight, but cannot be reasonably evaluated as our universe would likely be long dead by then). Rather than being moral, \(\rho = 0 \) is arguably immoral as it would suggest that the present has no value (If you are interested in a strong axiomatic basis for using a positive discount rate, I recommend Creedy and Guest 2008, 3.1). Furthermore, with \(\rho > 0 \), the SWF can be numerically approximated by only evaluating the first \(X \) finite periods, provided that \(X \) is sufficiently larger than the inverse of \(\rho \); for a \(\rho \) of 1.5%, the first 200-300 years are likely sufficient for expected social welfare maximization.

A second issue with the \(\rho = 0 \) position is that it has very strange policy implications outside of the context of climate change. For example, it suggests that expected social welfare maximizing governments should save more money for future generations as long as the pretax real riskless interest rate exceeds ng. This suggests that governments around the world should run very large surpluses in order to save large amounts of money for future generations, rather than run deficits as they are now. Unless one also advocates that governments should run very large surpluses to do this, then suggests that \(\rho \) should be zero when it comes to making decisions about climate change would be inconsistent.

A third issue with the \(\rho = 0 \) position is feasibility. Ultimately, it is individuals alive today that are currently negotiating to come to an agreement in Paris, and it is voters alive today that they are supposed to represent. The \(\rho \) implied by the Ramsey equation arguably not only tells us how much individuals value their future consumption but also how much individuals value future generations. If current generations valued future generations as much as themselves then current generations would likely increase savings for future generations (such as for their children and grandchildren) until \(r = ng \). So if market interest rates suggest that \(\rho > 0 \), then this suggests that current generations likely value future generations less than current generations. If a policy can only be justified by valuing future
generations more than current generations value those future generations, then current generations will have no incentive to go with that policy. Thus, such a policy is not feasible.

Despite the issues with the $\rho = 0$ position, it does bring up the problem that how much individuals discount their own future utility might not be the same as how much individuals discount future generations. More generally, the SWF could be written as $W = \sum_{s=t}^{\infty} e^{-\rho(s-t)} \sum_{i=1}^{M(s)} e^{-\rho s} M(t) (s-t) C_{ist}^{1-\eta/(1-\eta)}$ when $\eta \neq 1$ and $W = \sum_{s=t}^{\infty} \sum_{i=1}^{M(s)} e^{-\rho(s-t)} \ln(C_{ist})$ when $\eta = 1$, where ζ is the rate at which future generations are discounted, ρ is the rate at which individuals discount their own utility, $M(t)$ is the number of individuals born at time t, $T(i,t)$ is the life expectancy of the ith individual born at time t, and C_{ist} is the consumption of the ith individual born at time t in period s. The above specification allows for ζ and ρ to differ, but is otherwise essentially the same SWF. Fortunately, it might be possible to estimate ζ from empirical evidence (such as by looking at how much inheritance people leave to their offspring or by looking at happiness surveys). Unfortunately, as far as I can tell, there is basically zero literature on estimating ζ. Due to lack of estimates, it may make sense to appeal to Occam’s razor and assume that $\zeta = \rho$ until empirical evidence suggests otherwise.

D) Non-Constant Discount Rate?

So far, the assumption has been that the discount rate is constant. However, the discount rate does not necessarily have to be constant. Some have argued that a declining discount rate over time may make sense. For example, Arrow et al. (2012 and 2014), suggest that uncertainty about the future, particularly uncertainty of the growth rate of consumption, can cause a declining certainty-equivalent discount rate. Thus it may make sense to use a declining discount rate if one is performing traditional cost-benefit analysis. However, in the case of expected social welfare maximization, uncertainty about the future is already taken into account by taking into account the entire probability distribution of outcomes. Thus, the use of declining certainty-equivalent discount rates for expected social welfare maximization would be double counting and, therefore, would not make sense.

Another way that declining discount rates can be justified is on the observation that life expectancy is generally increasing over time. If the social rate of time preference is inversely related to the life expectancy of humans, then it may make sense to use a declining social rate of time preference. However, the magnitude of such an effect over the next century is likely small compared to the magnitude of the uncertainty of the social rate of time preference. Preference for simplicity suggests that it may make sense to use a constant social rate of time preference until the uncertainty of its magnitude is reduced and there is a better justification for declining social rate of time preference. Also, if one does want to use social rates of time preference that depend on life expectancy then one may want to do it in such a way that the anonymity principle is not violated (such as having the social rate of time preference be the same for everyone in any given year).
E) Population and Life Expectancy Concerns

The SWF given in 1H was $W = \Sigma_{t=1}^{\infty} e^{-\rho t} \frac{\Sigma_{i=1}^{N(t)} C_{it}^{1-\eta}}{(1-\eta)}$ when $\eta \neq 1$ and $W = \Sigma_{t=1}^{\infty} e^{-\rho t} \Sigma_{i=1}^{N(t)} \ln(C_{it})$ when $\eta = 1$. Such a SWF is a Benthamite SWF (named after 18th century philosopher Jeremy Bentham). Such a SWF may be reasonable if one treats population as exogenous (i.e. external to the model) when trying to maximize expected social welfare. However, if one treats population as endogenous (internal to the model) then such a Benthamite SWF may be problematic. A Benthamite SWF increases in value as the population of society increases, so have a tendency to desire overpopulation. A Benthamite SWF may favour policies that increase future population sizes at the expense of both the environment and the average standard of living of humanity. If one applies a Benthamite SWF to the issue of abortion then maximization of the SWF may suggest that abortion should be made illegal as it decreases future population.

It is observed in society that many people find overpopulation undesirable (from Malthus to the Chinese government’s 2 child policy). If this is the case then one way to make the SWF consistent with finding overpopulation undesirable is to rescale it based on the population size. For example, one could define the social welfare function as $W = \Sigma_{t=1}^{\infty} e^{-\rho t} / N(t) * \Sigma_{i=1}^{N(t)} C_{it}^{1-\eta} / (1-\eta)$ when $\eta \neq 1$ and $W = \Sigma_{t=1}^{\infty} e^{-\rho t} / N(t) * \Sigma_{i=1}^{N(t)} \ln(C_{it})$ when $\eta = 1$. Such a social welfare function is a type of Millian SWF (named after 19th century philosopher John Stuart Mill). The Millian SWF tries to maximize the average well being of individuals within society, rather than the sum of the utility of all individuals in society.

Both of the SWFs defined in the last 2 paragraphs have may have issues in how they value life expectancy. Both SWFs are indifferent between a society with few people that have very long life expectancies and a society with lots of people that have very short life expectancies (such that the number of people on Earth at any given time is unchanged). However, if the former scenario is preferable to the latter (i.e. longer life expectancies are desirable), then this should be reflected in the SWF. One way to do this is to put life expectancy directly in the SWF such as $W = \Sigma_{t=1}^{\infty} e^{-\rho t} / N(t) * \Sigma_{i=1}^{N(t)} l(i,t) C_{it}^{1-\eta} / (1-\eta)$ when $\eta \neq 1$ and $W = \Sigma_{t=1}^{\infty} e^{-\rho t} / N(t) * \Sigma_{i=1}^{N(t)} l(i,t) \ln(C_{it})$ when $\eta = 1$, where $l(i,t)$ is the life expectancy of individual i in time period t.

However, as life expectancy generally increases with income (https://en.wikipedia.org/wiki/Preston_curve) and self-reported happiness generally increases with life expectancy as well as income (World Happiness Report 2013 Table 2.1), one may need to use a different value of η than what is suggested by section 2 if one treats utility as a function of both life expectancy and income (because the estimates in section 2 do not control for life expectancy). Alternatively, one could rescale the value of people by the number of people born in the same year as them such as $W = \Sigma_{t=1}^{\infty} e^{-\rho t} / N(t) * \Sigma_{i=1}^{N(t)} l(i,t) C_{it}^{1-\eta} / (1-\eta)$ when $\eta \neq 1$ and $W = \Sigma_{t=1}^{\infty} e^{-\rho t} / N(t) * \Sigma_{i=1}^{N(t)} l(i,t) \ln(C_{it})$ when $\eta = 1$.
\[
\sum_{t=1}^{\infty} \frac{1}{M(t)} \sum_{i=1}^{M(t)} \int_{0}^{1} \left(\frac{1}{\rho} C_{it} \right)^{-1-\eta} \, d\rho
\]

when \(\eta = 1 \), where the definitions of these parameters is the same as in 4C. Overall, I leave it to the reader to decide from themselves what may be a reasonable functional form of the SWF. I just wanted to inform the reader about potential issues when it comes to population size and life expectancy.

5. Discussion and Conclusion:

A) What it Looks Like in Practice

One may ask, ‘how one can maximize expected social welfare maximization in practice?’ There may be many sources of uncertainty with many different functional forms, so propagating everything in order to analytically maximize expected social welfare may not be feasible. One way to maximize expected social welfare is to numerically approximate it by using Monte Carlo simulations. This involves obtaining sets of random parameters over all sources of uncertainty from the probability distributions. For example, one would obtain a random parameter for ECS, a random parameter for whether a massive volcano will erupt in a given year, a random parameter for whether there will be a recession in 2066, random parameters for the magnitude of the economic impacts of climate change, random parameters that determine the magnitude of emissions that will occur, etc. For each set of parameters, one evaluates social welfare. One can then estimate expected social welfare as the average social welfare over all sets of random parameters. One can then choose the policy option that has the largest expected social welfare. What does one do if one is considering an infinite set of policy options? For example, one may want to find the optimal level of taxation on CO₂ emissions. In this case, one may be able to use the Newton algorithm to numerically approximate the optimal solution (for more information see https://en.wikipedia.org/wiki/Newton's_method_in_optimization).

B) Previous Uses of Expected Social Welfare Maximization

Unfortunately, most of the literature on determining the economic impacts of climate change or determining optimal policy does not take an expected social welfare maximization approach. The literature primarily does either a traditional cost benefit approach or tries to maximize social welfare under certainty (by using the most probable values of ECS and other parameters). And even the literature that does look at expected social welfare rarely tries to find the policies that maximize it. Kopp et al. (2011) take the DICE integrated assessment model and use the uncertainty distribution of ECS to determine the social cost of carbon dioxide emissions (SCC) under uncertainty. With \(\eta = 1.4 \) and \(\rho = 0.14\% \), they find that the SCC is about 3 times higher under uncertainty than it is under certainty (assuming ECS takes on the most probable value). Dietz et al. (2007) independently get a similar result. Dietz et al. use the PAGE integrated assessment model and find that for \(\eta = 1 \) and \(\rho = 1.5\% \), the impact
of climate change on expected social welfare is about 3 times higher under uncertainty than under certainty (but with most probable parameters).

C) Which Moral Judgements Should be Made?

Ultimately, determining which policy option maximizes expected social welfare depends on moral judgments. In particular, one likely needs to choose a coefficient of relative risk aversion η and a discount rate ρ. I leave it to the reader to decide, based upon the information in this post, what η and ρ should be, although I would advise against being risk averse about the values of η and ρ as human risk aversion itself depends on η. However, η outside of $[0.5,2.0]$ is inconsistent with empirical observations. Furthermore, if the Ramsey equation is to be satisfied then this suggests that ρ lies in the interval $[0.2\%,2.4\%]$. Given the uncertainty of these two moral parameters η and ρ, what researchers could do is perform expected social welfare maximization for different values of η and ρ that are consistent with empirical observations. Policy makers could then look at the results of researchers and then, using their own moral judgements, choose the expected social welfare maximizing policy option.

Since social welfare functions are unique only up to positive affine transformations, one cannot really compare different social welfare functions. As a result, one cannot determine the expected value of expected social welfare for an uncertainty distribution of η and ρ. However, what one could do is determine the expected best policy response for expected social welfare maximization given an uncertainty distribution of η and ρ (i.e. one may be able to determine the expected value of level of CO$_2$ emission taxation that maximizes expected social welfare). Although, obtaining an objective probability distribution of η and ρ is difficult, so simply picking a value of η and a value of ρ and performing expected social welfare maximization may be the best option.

D) Conclusion

This post explains how expected social welfare maximization can be used to determine the optimal policy response for the issue of climate change and how one can determine a reasonable social welfare function by appealing to egalitarianism, individualism, desire for simplicity and empirical evidence. In particular, the social welfare function may depend on the coefficient of relative risk aversion η and the social rate of time preference ρ. Empirical evidence suggests that η is between 0.5 and 2.0 and ρ is between 0.2% and 2.4%. If people can agree to the frame work of expected social welfare maximization and agree to the approach of this post in how to determine the social welfare function then any remaining disagreement over moral judgements can ideally be resolved with better empirical evidence of human preferences. While this post covers how to rank policy options, it doesn’t cover how to get hundreds of countries to come to a single agreement; some countries may benefit
from climate change and other countries may try to cheat any mitigation agreement. So even if one can rank policy options the issue of obtaining cooperation remains.

6. References

